City of Molalla

 Clackamas County, Oregon
Wastewater Treatment Plant 2017 Lagoon Test Report

July 2017

The Dyer Partnership
 Engineers \& Planners, Inc.

1165 S. Park St.
Lebanon, Oregon 97355
(541) 405-4520

City of Molalla
 Clackamas County, Oregon

Wastewater Treatment Plant 2017 Lagoon Leakage Test Report

July 2017

Project No. 100.29

The Dyer Partnership
Engineers \& Planners, Inc.
1165 S. Park St.
Lebanon, OR 97355
(541) 405-4520
www.dyerpart.com

Table of Contents

1. INTRODUCTION
2. LAGOON PROCESS
3. TEST PERIOD
4. DATA COLLECTION METHODS AND EQUIPMENT
5. RESULTING DATA
6. SEEPAGE CALCULATIONS
7. CONCLUSION

APPENDICES

Appendix A

Figure A - Wastewater Treatment Plant Flow Schematic

Appendix B

Lagoon Design Properties and Survey
Appendix C
Data Collection Table

Appendix D

Data Entry and Analysis Spreadsheets

Appendix E

Oregon DEQ Guidelines for Estimating Leakage from Existing Sewer Lagoons

1. INTRODUCTION

Leak testing for the City of Molalla's wastewater lagoons was performed by The Dyer Partnership, Engineers and Planners, Inc. in July of 2017. The leak testing was conducted in accordance with the Oregon DEQ Guidelines for Estimating Leakage for Existing Sewer Lagoons.

2. LAGOON PROCESS

The Molalla Wastewater Treatment Plant (WWTP) process utilizes two lagoons, in series, for primary wastewater treatment. The data collection for the lagoon leak test was completed during normal plant operation, for both lagoons simultaneously. Based on the fact these lagoons work in series, it was not possible to isolate the individual lagoons during the testing period. Bypassing Lagoon No. 1 would create a short circuiting of flow in Lagoon No. 2 and result in inadequate treatment. The WWTP flow through the lagoons is noted below and is shown on the schematic included as Appendix A of this report:

1. Flows from the plant Headworks gravity flow to an Aeration Basin.
2. Flows from the Aeration Basin are pumped to Lagoon No. 1. Pumped flows to Lagoon No. 1 are metered by an 18-inch magnetic flow meter.
3. Flows from Lagoon No. 1 gravity flow to Lagoon No. 2 through a 14-inch diameter line.
4. Flows from Lagoon No. 2 gravity flow to two Dissolved Air Flotation (DAF) Units. Each DAF unit is served by a 14 -inch gravity line, which are flow metered by magnetic flow meters on each line.

The physical properties for the lagoons from the 2008 NPDES Permit Renewal Application documentation (Tetra Tech) are found in Table 1, below.

Table 1: Lagoon Properties

	Max. Depth	Surface Area at 6-foot depth		Lagoon Perimeter	Lagoon Side Slope	Volume(6-foot depth to 12-foot depth)		
	(ft.)	(ac.)	(s.f.)	(ft.)		(gal.)	(gal./ft.)	(gal./in.)
$\begin{gathered} \text { Lagoon } \\ \text { No. } 1 \end{gathered}$	12	11.4	496,584	3,380	3:1	23,651,940	3,941,990	328,499
$\begin{aligned} & \hline \text { Lagoon } \\ & \text { No. } 2 \end{aligned}$	12	13.6	592,416	3,480	3:1	27,993,272	4,665,545	388,795
Totals						51,645,212	8,607,535	717,294

On July 10, 2017 Project Delivery Group completed a topographic survey of the Molalla lagoons. The purpose of the survey was to establish the water elevation and associated water surface areas of both lagoons at the start of the 10-day test period. The surface of Lagoon No. 1 was found to have an elevation of 320.04 feet (NAVD 88) and a total surface area of 521,014 . sq. ft . The surface of Lagoon No. 2 had a surface elevation of 312.20 feet (NAVD 88) with a total surface area of 629,893 sq. ft. The storage volume at the test period depth of Lagoons No. 1 and

No. 2 is 324,765 gal./in and $392,634 \mathrm{gal} . / \mathrm{in}$, respectively. Therefore, the lagoons are calculated to have a total storage volume of $\mathbf{7 1 7 , 3 9 9}$ gal./in at a total surface area of both lagoons of $1,150,907$ sq. ft. This closely matches the volume per depth value of 717,294 gal./in noted in Table 1 and will be used for the calculations in this report.

3. TEST PERIOD

Data for the leakage analysis was collected over a ten day period starting Monday, July 10, 2017 and ending Thursday, July 20, 2017. Data collection occurred at 8:00 am each morning, starting with the initial readings on July $10^{\text {th }}$. Therefore, "Day 1 " represents the 24 hour period between 8:00 am, July $10^{\text {th }}$ and 8:00 am, July $11^{\text {th }}$. The subsequent days follow the same 24 hour period, from 8:00 am to 8:00 am the following day.

4. DATA COLLECTION METHODS AND EQUIPMENT

The equipment and methods used to collect data for the analysis of the leak testing included:

- Influent Lagoon Flow - An 18-inch magnetic flow meter was installed on the effluent line of the transfer pump station that delivers wastewater from the Aeration Basin to Lagoon No. 1. The meter was installed in September of 2016 to assist in the data collection for this test. It should be noted that this meter was installed directly downstream of a vertical 45 degree bend. The City was able to verify from the manufacturer that the installation would produce less than one percent (1\%) error in flow readings.
- Precipitation - One rain gauge with $1 / 100$ of an inch accuracy is located at the Wastewater Treatment Plant was available to record rain fall.
- Lagoon No. 1 Level - The initial lagoon level was established using the staff gauge in Lagoon No. 1 with an associated distance measurement from the top of the Lagoon No. 1 effluent structure to the water surface level. All measurements were taken to the nearest $1 / 16$ of an inch from the same location on the effluent structure, down to the water surface level.
- Lagoon No. 2 Level - The initial lagoon level was established using the existing, sloped staff gauge in Lagoon No. 1. The staff gauge is angled up 16 degrees from the horizontal. Each morning a tack was installed at the water surface elevation on the staff gauge and the distance from this tack to the previous day tack was measured to the nearest $1 / 16$ of an inch. The change in lagoon depth was calculated using this measurement and the 16 degree slope of the gauge.
- Lagoon Effluent Flow - Two existing 14-inch magnetic flow meters were used to record the effluent flow from Lagoon No. 2 to the Dissolved Air Flotation (DAF) Units.
- Evaporation - A 4-foot diameter evaporation pan with a Novalynx Analog Output Evaporation Gauge was used to record evaporation. This pan is recommended in the Oregon DEQ Guidelines for Estimating Leakage for Existing Sewer Lagoons.

5. RESULTING DATA

A. Influent Flow

The total wastewater influent flow to the lagoons was 10,272,062 gallons over the 10-day test period, as recorded by the magnetic flow meter on the effluent transfer pump station line. Based on the volume of $717,399 \mathrm{gal}$./in. in the lagoons at or near the surface test period surface elevations, this equates to an increase in lagoon level of 14.32 inches over both lagoons, or $\mathbf{1 . 4 3 2}$ inches per day. The daily flow data is listed in Table 2, below.

Table 2: Lagoon Influent Flow

	Daily Flow	
Day	(gal.)	(in.)
Day 1 (10/11-10/12)	234,465	0.33
Day 2 (10/12 - 10/13)	888,239	1.24
Day 3 (10/13 - 10/14)	898,910	1.25
Day 4 (10/14-10/15)	852,863	1.19
Day 5 (10/15-10/16)	890,909	1.24
Day 6 (10/16 - 10/17)	816,052	1.14
Day 7 (10/17-10/18)	916,188	1.28
Day 8 (10/18-10/19)	866,121	1.21
Day 9 (10/19 - 10/20)*	$1,809,927$	2.52
Day 10 (10/20-10/21)*	$2,098,388$	2.92
Total	$10,272,062$	14.32

* Lagoon influent flow increased on days 9 and 10 due to the recirculation of wastewater from the DAF units to the aeration basin and lagoons.

B. Precipitation

There was no measurable precipitation during the 10-day test period.

C. Lagoon Levels

Over the testing period Lagoon No. 1 had an overall surface level elevation increase of 5.3 inches, which equates to an increase in storage volume of $1,721,257$ gallons. Lagoon No. 2 had an overall surface level elevation decrease of 3.18 inches, which equates to a decrease in storage volume of 1,248,575 gallons. Therefore, there was a net storage amount of 472,682 gallons in the lagoons, which produces an overall increase in lagoon depth of 0.659 inches over both lagoons during the test period or $\mathbf{0 . 0 6 6}$ inches per day. Daily lagoon depths are shown in Tables 3 and 4.

Table 3: Lagoon No. 1 Levels

	Change in Depth		Lagoon Depth (ft.)
	(in.)	(ft.)	
$7 / 10 / 17$	-	-	9.40
$7 / 11 / 17$	0.00	0.000	9.40
$7 / 12 / 17$	-1.20	-0.100	9.30
$7 / 13 / 17$	0.75	0.063	9.36
$7 / 14 / 17$	0.06	0.005	9.37
$7 / 15 / 17$	-0.37	-0.031	9.34
$7 / 16 / 17$	-0.63	-0.053	9.28
$7 / 17 / 17$	-0.06	-0.005	9.28
$7 / 18 / 17$	0.50	0.042	9.32
$7 / 19 / 17$	2.50	0.208	9.53
$7 / 20 / 17$	3.75	0.313	9.84
Totals	5.30	0.442	-

Table 4: Lagoon No. 2 Levels

	Change in Depth		Lagoon Depth (ft.)
	(in.)	(ft.)	
7/10/17	-	-	10.10
7/11/17	-0.62	-0.12	9.98
7/12/17	-0.69	-0.08	9.90
7/13/17	-1.17	-0.09	9.81
7/14/17	-0.31	-0.13	9.68
7/15/17	-0.41	-0.03	9.65
7/16/17	1.52	0.13	9.78
7/17/17	1.45	0.12	9.90
7/18/17	-1.43	-0.12	9.78
7/19/17	-0.28	-0.02	9.76
7/20/17	-1.24	-0.10	9.66
Totals	-3.18	-. 265	-

D. Effluent Flow

The total effluent flow from the lagoons to the DAF units during the 10-day test period was $6,673,000$ gallons, as recorded by the two DAF unit magnetic flow meters. Based on the volume of $717,399 \mathrm{gal} . / \mathrm{in}$. in the lagoons (Table 1), this equates to a decrease in lagoon levels of 9.30 inches, or $\mathbf{0 . 9 3 0}$ inches per day, over both lagoons during the test period. The daily effluent flow data is listed in Table 5, below.

Table 5: Lagoon Effluent Flow

	Daily Flow			
	DAF No. 1 Meter		DAF No. 2 Meter	
Day	(gal.)	(in.)	(gal.)	(gal.)
Day 1 (10/11-10/12)	95,000	0.13	197,000	0.27
Day 2 (10/12-10/13)	209,000	0.29	496,000	0.69
Day 3 (10/13-10/14)	263,000	0.37	687,000	0.96
Day 4 (10/14-10/15)	259,000	0.36	592,000	0.83
Day 5 (10/15-10/16)	267,000	0.37	705,000	0.98
Day 6 (10/16-10/17)	201,000	0.28	454,000	0.63
Day 7 (10/17-10/18)	0	0.00	0	0.00
Day 8 (10/18-10/19)	81,000	0.11	306,000	0.43
Day 9 (10/19-10/20)	222,000	0.31	566,000	0.79
Day 10 (10/20-10/21)	264,000	0.37	809,000	1.13
Totals	1,861,000	2.59	4,812,000	6.71
Combined Total (gal.)	6,673,000			
Combined Total (in.)	9.3			

E. Evaporation

The measured evaporation during the 10 -day test period was 2.452 inches. A correction factor of 0.8 was applied to the pan evaporation. The standard correction factors for pan coefficients are typically 0.7 to 0.9 . The resulting evaporation within the lagoons was 1.97 inches or $\mathbf{0 . 1 9 7}$ inches per day over the test period.

6. SEEPAGE CALCULATIONS

A. Flow Balance

The calculations for determining the seepage from the lagoons was derived through a simple flow balance for the system using the inches per day flows determined above. The equation used in the calculations is:

```
Seepage (in./day) = Influent (in./day) + Precipitation (in./day) - Lagoon Storage
(in./day) - Effluent (in./day) - Evaporation (in./day)
```

The equation above results in:
Seepage (in./day) $=1.432$ in. $/$ day +0 in./day -.066 in./day -0.930 in. $/$ day -0.197 in./day = 0.239 inches per day

B. Volume Check

As a check to the above flow balance calculation, a 10-day volume balance is shown below in Table 7. Flows contributing to influent flow to the lagoons are shown as positive numbers and flows contributing to effluent and storage within the lagoons are shown as negative. The balance of these volumes is considered as the total amount of seepage during the test period, and is found to be 1,719,130 gallons over the 10-day test period or 171,913 gallons per day. Based on the storage the lagoons of 717,399 gallons per inch, the balance value is equal to seepage amount of 2.40 inches or $\mathbf{0 . 2 4 0}$ inches/day.

Table 7: Lagoon Volume Balance

Flow Element	Total Flow 10 Day Test Period (gal.)	Avg. Daily Flow 10 Day Test Period (gal./day)
Lagoon Influent Flow (Gal.)	$10,272,062$	$1,027,206$
Precipitation (Gal.)	0	0
Lagoon 1 Storage (Gal.)	$-1,721,257$	$-172,126$
Lagoon 2 Storage (Gal.)	$1,248,575$	124,857
Lagoon Effluent (DAF No. 1) (Gal.)	$-1,861,000$	$-186,100$
Lagoon Effluent (DAF No. 2) (Gal.)	$-4,812,000$	$-481,200$
Evaporation (Gal.)	$-1,407,250$	$-140,725$
Balance/Seepage (Gal.)	$1,719,130$	171,913

7. CONCLUSION

The guidelines for estimating leakage from existing sewage lagoons produced by the Oregon DEQ states that seepage rates as high as $1 / 8$ of an inch per day or less are considered normal. Seepage exceeding $1 / 4$-inch per day indicates a seal failure, or absence of adequate initial seal.

The lagoon leakage test did not exceed $11 / 4$-inch per day. The lagoon leakage test PASSED.

Appendix A

Figure A - Wastewater Treatment Plant Flow Schematic

\(\left.$$
\begin{array}{|l|c|c|}\hline \hline \begin{array}{c}\text { THE DYER PARTNERSHIP } \\
\text { ENGINEERS \& PLANNERS, INC. }\end{array}
$$ \& CITY OF MOLALLA

\hline WATE: JULY 2017 \& WWTP 2017 LAGOON LEAK TEST\end{array}\right]\)| FIGURE NO. |
| :---: |
| PROJECT NO.: 100.29 |

Appendix B

Lagoon Design Properties and Survey

DESIGN DATA

Effluent Quality
Required Efflient Quality
Anticipated file Effluent Qualty
Headworks (2002 Construction)

```
Mypeof screens
```

```
Mumber of screens, (ect
```

Mumber of screens, (ect
\$yons screen
\$yons screen
S

```
S
```

Heodworks, influent flow meosurement
Number of flumes
wworks, influent
Number of flume
Throat width
Trroat width
Peouk flow copocity
Vinimum flow cocyobility
$\begin{array}{ll}B 005<10 \mathrm{mg} / 1 & \begin{array}{l}\mathrm{TSS} \\ \mathrm{TSS}\end{array} 10 \mathrm{mg} / 1\end{array}$
eration Basin (1980 Construction)

Ensions	
Size (botiom of bosin) Side siopes (noriziert)	$\underbrace{200}_{2: 1}$ feet by 54 feet
Moximum sice woter cepth	10 feet with 2 feet freeboord
Bosin volume, maximum	Asphatit-concrerete
	Aspirating
er	

Transfer Pump Station (2002 Construction)

Estimated PIF from basin Main pump type	9.25 mgd Centrifugal submersible w/vid
Moin ${ }^{\text {pumps }}$ pereting	
Main Stoundoy capacity each	
Main pump capacty eacn	5800 gpm at 51 it ton $\mathrm{w} / \mathrm{vfd}$
Jockey jump copocity (one forcemoin)	2500 gom at 49 ft tdh o
ok capacity	$\begin{aligned} & 2100 \mathrm{gpm} \text { at } 56 \mathrm{ft} \mathrm{fdh} \mathrm{th}) \\ & 7800 \mathrm{gpm}(11.23 \mathrm{mgqd}) \end{aligned}$
vels	
Maximum W.S. El	$\begin{aligned} & 286.0 \text { ft } \\ & \text { lu2 } \end{aligned}$
Operoting volume	55,820 gol (inclu

Transfer Forcemain (2002 Construction)

Gravity Filters (2007 Construction)
Copacity
Nurber of filters
Surfoce oreo, toto
4.0 mgd

${ }_{\text {Hydrauic copacity }}^{\text {Medi }}$
Type
Depth
Backwash control
Backwosh rate

Bockwosh duration
Bockwosh volume
Air Scour Blower
Bockwosh hor
Air Scour Blower
TYpe
${ }_{\substack{\text { Typ } \\ \text { Siz }}}$
Size
Air scour rote
Air scour flow (1.iter)
Sockwosh Folow Meter (fM-5)
Iype
Type
Size

lype
size
Range
俍

Grovel, sand, and anthrocite cool
12 s.
Micico sond, 24^{7} enthracite coal

Manual Manual, timed or pressure dififerentiol | $15 \mathrm{gpm} / \mathrm{s}$ |
| :--- |
| $2,147 \mathrm{gom}$ |

2,147 gpm
$8,600-1,200$
8
Rotary Positive Displacement

Transit Time
Transit Time
16 nit
$0-17$ NGD
0
Transit Time
${ }^{8}$ Inch

Disinfection (1980 Construction)

Perpendiculor to streamfiow
Box Culvert, with 10° weir
Monuol stoff guoge
Effluent/Irrigation Pump Station (2000 Construction)

Vertical turbine
$2+1$ future

${ }_{\text {VFD }}^{300}$ bhp
12-ft id manhole
Pressure
P.
transducer
Submersible
$\underbrace{2}_{175} \mathrm{gpm}$ ot 15 ft tdh

Plant Standby Power Generator (2000 Construction)

Reliability Class Location Type Transfer Switch	Eff/Irr Pump Stati Diesel Engine Automatic Automatic

Plant Alarm System
Type

Effluent/Irrigation Forcemain (2000 \& 2006 Construction)
Material

Size (Nominal Inside diameter) \quad| PVC and HDPE |
| :--- |
| 24 inches |

Size (Nominol Inside diameter)	24 inches 27,000 feet (approx. entire length)
	10.1 mgd
	${ }^{1.0}{ }^{1.0}$ to to 4.0 mgd

\section*{Approx OPerorting Ronge of Flows \quad| 1.0 |
| :--- |
| 0.5 to |
| 0.0 |
| 4.0 |
| mgd |}

Discharge Monitoring Structure (2006 Construction)
Dechlorinotion (for surface woter discharge conditions only)
Feed Solution
Chemical Feed Pumps
Chemical Feed Pumps
Feed Control
$2-13$ gph (with 1000:1 Turnd
Flow ond Cl2 residuol poced
Lifluent Sampler: Type: Flow Paced or Time Composite
Type: Fow Paced or Time
Continueus Monitoring/Recording:
Temperature Temperature
DO
Chhorine
fow Measure
Measur
Type
Size
Probe.
$\begin{aligned} & \text { Probei } \\ & \text { Residual Analyzer (} 2 \text {) }\end{aligned}$
Electromagnetic Multi-port Insertion Type
$12-$-inch
Molalla River Outfall (2006 Construction)

Length
Diftuser Design
Number of Ports
Diameter of Port
Minimum Summer Submergence
Winimum Winter Submergence
Three (Duckbill)
Three (Duckbill)
Eight inches

Appendix C

Data Collection Table

City of Molalla
Lagoon Leak Test Data Sheet

Appendix D

Data Entry and Analysis Spreadsheet

City of Molalla
2017 Lagoon Leak Test
July-17
Transfer Pump Station Meter Readings

	Totalized Meter Readings (gal)	Daily Flow							
	8:00:00 AM	(gal)	(in)	Test Day					
Monday, July 10, 2017	$358,848,216$								
Tuesday, July 11, 2017	$359,082,681$	234,465	0.33	Day 1					
Wednesday, July 12, 2017	$359,970,920$	888,239	1.24	Day 2					
Thursday, July 13, 2017	$360,869,830$	898,910	1.25	Day 3					
Friday, July 14, 2017	$361,722,693$	852,863	1.19	Day 4					
Saturday, July 15, 2017	$362,613,602$	890,909	1.24	Day 5					
Sunday, July 16, 2017	$363,429,654$	816,052	1.14	Day 6					
Monday, July 17, 2017	$364,345,842$	916,188	1.28	Day 7					
Tuesday, July 18, 2017	$365,211,963$	866,121	1.21	Day 8					
Wednesday, July 19, 2017	$367,021,890$	$1,809,927$	2.52	Day 9					
Thursday, July 20, 2017	$369,120,278$	$2,098,388$	2.92	Day 10					
Friday, July 21, 2017									
Totals							$10,272,062$	14.32	

Lagoon Storage (gal/in)	717,399

City of Molalla
2017 Lagoon Leak Test
July-17
Lagoon Levels

Lagoon Properties at Test Depth						
	Depth	Volume			Slope of Staff Gauge	
	(ft)	Area	(gal/ft)	(gal/in)	(deg)	(rad)
Lagoon \#1	9.4	521,014	3,897,185	324,765	N/A	N/A
Lagoon \#2	10.1	629,893	4,711,603	392,634	16	0.27925268
Total		1,150,907	8,608,787	717,399	N/A	N/A

Lagoon No. 1						Change in Volume	
	Reading	Change in Depth		Depth	(gal)		
	(in)	(in)	(ft)	(ft)			
Monday, July 10, 2017	58.55			9.40	0	Day 1	
Tuesday, July 11, 2017	58.55	0.000	0.000	9.40	0	$-389,718$	
Wednesday, July 12, 2017	59.75	-1.200	-0.100	9.30	Day 2		
Thursday, July 13, 2017	59.00	0.750	0.063	9.36	243,574	Day 3	
Friday, July 14, 2017	58.94	0.060	0.005	9.37	19,486	Day 4	
Saturday, July 15, 2017	59.31	-0.370	-0.031	9.34	$-120,163$	Day 5	
Sunday, July 16, 2017	59.94	-0.630	-0.053	9.28	$-204,602$	Day 6	
Monday, July 17, 2017	60.00	-0.060	-0.005	9.28	$-19,486$	Day 7	
Tuesday, July 18, 2017	59.50	0.500	0.042	9.32	162,383	Day 8	
Wednesday, July 19, 2017	57.00	2.500	0.208	9.53	811,913	Day 9	
Thursday, July 20, 2017	53.25	3.750	0.313	9.84	$1,217,870$	Day 10	
Totals		5.30	0.442		$1,721,257$		

Lagoon No. 2						
	Reading	Change in Depth		Depth	Change in Volume	
	(in)	(in)	(ft)	(ft)	(gal)	
Monday, July 10, 2017	0.00			10.10		
Tuesday, July 11, 2017	-2.25	-0.62	-0.12	9.98	-243,432.80	Day 1
Wednesday, July 12, 2017	-2.50	-0.69	-0.08	9.90	-270,917.15	Day 2
Thursday, July 13, 2017	-4.25	-1.17	-0.09	9.81	-459,381.26	Day 3
Friday, July 14, 2017	-1.13	-0.31	-0.13	9.68	-121,716.40	Day 4
Saturday, July 15, 2017	-1.50	-0.41	-0.03	9.65	-160,979.76	Day 5
Sunday, July 16, 2017	5.50	1.52	0.13	9.78	596,803.00	Day 6
Monday, July 17, 2017	5.25	1.45	0.12	9.90	569,318.65	Day 7
Tuesday, July 18, 2017	-5.19	-1.43	-0.12	9.78	-561,465.98	Day 8
Wednesday, July 19, 2017	-1.00	-0.28	-0.02	9.76	-109,937.39	Day 9
Thursday, July 20, 2017	-4.50	-1.24	-0.10	9.66	-486,865.61	Day 10
Totals		-3.18	-0.265		-1,248,575	

City of Molalla
2017 Lagoon Leak Test
July-17
DAF Meter Readings

	DAF No. 1					DAF No. 2				
	Meter Readings (MG)		Daily Flow			Meter Readings (MG)		Daily Flow		
	8:00:00 AM	11:55:00 PM	(MG)	(in)	Test Day	8:00:00 AM	11:55:00 PM	(MG)	(in)	Test Day
Monday, July 10, 2017	0	0				0	0			
Tuesday, July 11, 2017	0.095	0.209	0.095	0.13	Day 1	0.197	0.45	0.197	0.27	Day 1
Wednesday, July 12, 2017	0.095	0.259	0.209	0.29	Day 2	0.243	0.654	0.496	0.69	Day 2
Thursday, July 13, 2017	0.099	0.261	0.263	0.37	Day 3	0.276	0.656	0.687	0.96	Day 3
Friday, July 14, 2017	0.097	0.283	0.259	0.36	Day 4	0.212	0.739	0.592	0.83	Day 4
Saturday, July 15, 2017	0.081	0.282	0.267	0.37	Day 5	0.178	0.632	0.705	0.98	Day 5
Sunday, July 16, 2017	0.000	0.000	0.201	0.28	Day 6	0	0.000	0.454	0.63	Day 6
Monday, July 17, 2017	0.000	0.000	0.000	0.00	Day 7	0.000	0.000	0.000	0.00	Day 7
Tuesday, July 18, 2017	0.081	0.228	0.081	0.11	Day 8	0.306	0.705	0.306	0.43	Day 8
Wednesday, July 19, 2017	0.075	0.263	0.222	0.31	Day 9	0.167	0.570	0.566	0.79	Day 9
Thursday, July 20, 2017	0.076	0.222	0.264	0.37	Day 10	0.406	0.709	0.809	1.13	Day 10
Totals			1.861	2.59				4.812	6.71	
Lagoon Storage (gal/in)	717,399									

City of Molalla
2017 Lagoon Leak Test
July-17
Evaporation

	Evaporation Pan Depth		
	Logger Reading	Change in Level	Test Day
	$8: 00$ AM		
Monday, July 10, 2017	8.008		
Tuesday, July 11, 2017	7.704	-0.304	Day 1
Wednesday, July 12, 2017	7.464	-0.240	Day 2
Wed Water Level Adjustment	7.238		
Thursday, July 13, 2017	7.033	-0.205	Day 3
Friday, July 14, 2017	6.863	-0.170	Day 4
Saturday, July 15, 2017	6.630	-0.233	Day 5
Sunday, July 16, 2017	6.358	-0.272	Day 6
Monday, July 17, 2017	6.111	-0.247	Day 7
Tuesday, July 18, 2017	5.860	-0.251	Day 8
Wednesday, July 19, 2017	5.590	-0.270	Day 9
Thursday, July 20, 2017	5.330	-0.260	Day 10
Total		-2.452	

Precipitation \& Pan Coefficient Adjustments	
Evaporation (in)	-2.452
Pan Coefficient	0.8
Corrected Evaporation (in)	-1.962
Lagoon Storage (gal/in)	717,399
Evaporation Total (gal)	$-1,407,250$

City of Molalla
2017 Lagoon Leak Test
July-17
Volume Summary

Flow Element	Total Flow 10 Day Test Period (gal.)	Avg. Daily Flow 10 Day Test Period (gal./day)
Lagoon Influent Flow	$10,272,062$	$1,027,206$
Precipitation	0	0
Lagoon 1 Storage	$-1,721,257$	$-172,126$
Lagoon 2 Storage	$1,248,575$	124,857
Lagoon Effluent (DAF No. 1)	$-1,861,000$	$-186,100$
Lagoon Effluent (DAF No. 2)	$-4,812,000$	$-481,200$
Evaporation	$-1,407,250$	$-140,725$
Balance/Seepage	$1,719,130$	171,913

Appendix E

Oregon DEQ Guidelines for Estimating Leakage from Existing Sewer Lagoons

State of Oregon

Department of Environmental Quality Guidelines

Guidelines for Estimating Leakage from Existing Sewage Lagoons

PURPOSE AND SCOPE
EXCLUSIONS
GENERAL APPROACH
EQUIPMENT REQUIREMENTS
MEASUREMENTS AND CALCULATIONS

REPORT FORMAT
ANNUAL WATER BALANCE
NEW LAGOONS

PURPOSE AND SCOPE

These guidelines provide for relatively inexpensive test equipment and procedures to be used for prioritizing problem lagoons used for treating domestic sewage. Such tests are not definitive. They should be considered preliminary and approximate.

Tests based on these guidelines can only indicate whether the seal on an existing lagoon probably remains intact, or approximately how much it may be leaking. Preliminary tests of this type are not suitable for sewage lagoons where there is a strong likelihood of contamination, or an immediate urgency to protect a priority aquifer.

EXCLUSIONS

Such preliminary testing is not suitable for various types of lagoons which may contain stronger wastes than sewage. For example, leak tests for sludge, septage, strong industrial wastes, and landfill leachate lagoons may warrant a higher level of accuracy. To attain greater accuracy entails considerable time and expense, requires more equipment to develop wind and temperature records, and involves calculations outside the scope of these guidelines.

Such accuracy is seldom warranted for sewage lagoons. In critical groundwater pollution situations, where lagoon seepage is a known concern, immediate installation of monitoring wells and a formal program of groundwater monitoring are normally warranted. In such situations, no program of leak testing is probably accurate enough to substitute for direct groundwater monitoring. Leak testing would only delay the definitive determinations that must be made.

GENERAL APPROACH

The general objective of a leak test is to estimate the average rate of seepage through the bottom of the lagoon. Normally each lagoon cell is isolated and tested separately, which better pinpoints the location of any major leaks. The rate of seepage is expressed in inches per day or centimeters per second.

Leak testing should be restricted to July and August, when rainfall is minimal and the ground is dry enough to exclude significant runoff. Tests conducted at other times will have more variables and may underreport seepage due to runoff effects.

To obtain reasonable precision, each cell of a lagoon should be isolated and tested over a period of 10-15 days. Cell depth and pan evaporation measurements should be taken daily. If the lagoon cell cannot be isolated, then daily influent/effluent flows must also be measured. Daily measurements are preferred over weekly to improve precision and to minimize random measurement errors.

Lagoon liquid depth should suit the purpose of the test. To determine average seepage rates, lagoons should be at average operating depth.

In priority areas, any rate of seepage greater than zero may warrant direct sampling and monitoring of the groundwater. Seepage of $1 / 8^{\prime \prime}$ per day or less is normal. However, this low rate can cause groundwater contamination where lagoon contents are strong and background levels are high quality. Seepage exceeding $1 / 4$ " per day indicates a seal failure, or absence of adequate initial seal.

EQUIPMENT REQUIREMENTS

Each cell of a lagoon needs to be equipped with a staff gauge for level measurements. Stilling wells to dampen wave action are recommended, and will allow a staff gauge to be read to $1 / 8^{\prime \prime}-1 / 16 "$. Precipitation can be measured to about $1 / 100$ " with a good rain gauge. Evaporation can be measured to roughly $1 / 1000$ " with a hook gauge.

The following specifications for rainfall and evaporation equipment are based on Weathertronics equipment manufactured by Qualimetrics, Inc. of Sacramento, and available in Oregon through International Reforestation Supply, Eugene (345-0597). Equivalent equipment is acceptable.

1. Rain Gauge. Qualimetrics Model 6330 . This is a plastic gauge with 11 " capacity and 0.01 " graduations, designed for post mounting.
2. Evaporation Pan. Qualimetrics Model 6821. This is a standard US Weather Bureau steel pan, 47.5" diameter by 10" deep.
3. Hook Gauge. Qualimetrics Model 6831. This is a brass gauge with 0.02 " graduations.

To obtain accurate measurements, the equipment needs to be set up level and plumb in an unsheltered area near the lagoon. Equipment may have to be fenced to exclude animals.

The above list is a minimum. Various equipment needed to attain higher levels of accuracy is not listed. For example:

- Recording anemometer

- Max/min thermometers for air, for the evaporation pan, and for the lagoon surface

If such equipment is available, its use will add precision and accuracy to the results. However, its use is not mandatory for preliminary leak tests used to screen and prioritize existing sewage treatment lagoons.

MEASUREMENTS AND CALCULATIONS

Measurements should be made on a schedule, at the same time each day, so that each set of data represents the duration of exactly one day. All measurements should be tabulated to aid calculation and reporting. We recommend using the attached form or a similar format.

Computations should be converted to compatible units of depth. Influent volume (gallons per day) is converted to inches per day through measurement of the actual water surface area. Rainfall will normally be near zero in July and August, but should be verified daily.

Evaporation will vary with wind and temperature. It should be measured daily, and the pan should be kept well filled.

Lagoon evaporation rates are invariably less than pan evaporation rates. Pan correction factors generally vary from 0.7 to 0.9 . The larger the lagoon, the more its evaporation rate lags behind pan evaporation, so the smaller the numerical value of the pan correction factor.

In hot and windy summer weather, evaporation can be substantial. An erroneous pan correction factor can inject significant error. The result of computing seepage rates without any correction for pan evaporation is to overcalculate the evaporation rate. The effect of this error would be to underreport the seepage rate.

REPORT FORMAT

Leakage reports should be short and to the point. The main conclusion is to estimate the seepage rate from each lagoon cell, and from the lagoon as a whole. The methodology and equipment need to be described briefly but thoroughly. A copy of all field measurements and calculations should be tabulated and attached as supporting documentation.

Reports should be certified and signed by a registered engineer or professional hydrologist.

ANNUAL WATER BALANCE

The annual water balance prepared for each lagoon requires determinations of both seepage and evaporation. Leak tests performed according to these guidelines at average liquid depth can establish an average rate of seepage for the water balance. The rate of seepage will tend to vary with liquid level, and will remain constant if the level stays constant.

For the purpose of making water balance calculations, a monthly average evaporation rate should be obtained from local climatological records. Such records may then be applied with a suitable pan correction factor between 0.7 and 0.9 , as previously described.

Rate of evaporation and pan correction factors both tend to vary throughout the year. To make accurate adjustments requires additional measurements be taken of all the pertinent factors. These include wind, water
temperature, air temperature, and atmospheric pressure. Pan evaporation corrections should conform to established calculation methods, as presented in standard hydrology texts.

NEW LAGOONS

New sewage and sludge lagoons are designed to be effectively watertight and nearly leak-free. Lagoons which may jeopardize groundwater because of their contents, uses, or location are routinely installed with groundwater monitoring wells. In such applications, leak testing is not a practical or reliable alternative to direct monitoring of the groundwater.

All of the measurements in leak tests are approximations, especially liquid level, and the pan correction factor is usually a rough estimate. Consequently, seepage computed from a leak test cannot be used to prove or substantiate the existence of any actual leak. Leak testing as a basis for acceptance of lagoon construction is not feasible, too often has led to fruitless litigation, and should be discouraged.

As a practical matter, the engineer must design each lagoon for watertightness. Then the engineer must conduct thorough, intensive, and continuous construction inspection to verify that watertight construction is being attained. Inspection may include compaction, infiltrometer, smoke, and spark tests, and constant observation of workmanship and materials.

If leakage and contamination occurred from a properly inspected and certified lagoon, it would indicate a damaged liner or a failure of design. Assuming good design and inspection, the engineer's written certification of proper construction carries a presumption of watertightness. No leak testing program should be approved as a substitute for diligent construction inspection.

INQUIRIES

Inquiries about these guidelines should be directed to DEQ regional water-quality plan review engineers.

DSM:LAGOON2.TST

Orig. V. 93
Rev1. VIII. 94

LAGOON LEAK TEST

CITY OF

\qquad
CELL NO._ WATER SURFACE AREA

CELL WATER DEPTH @ TEST START

@ TEST END

Date	INFLUENT (in/day)	$\begin{gathered} \text { +PRECIP } \\ \text { (in/day) } \end{gathered}$		EFFLUENT (in/day)	$=\text { NET }$ SEEPAGE

NOTES:

